Section:
03. Renewable Energy
Chair:
Prof. Dr. M. Ivantysynova, Perdue University
Form of presentation:
oral
Duration:
90 Minutes
04:00 pm
An Overview of Energy Saving Circuits in Mobile Hydraulics
Author:
Univ.-Prof. Dr.-Ing. Hubertus Murrenhoff | RWTH Aachen University, IFAS | Aachen | DE
» Details anzeigen
Starting from today’s commercially widespread load sensing systems the general lecture will focus on novel ideas to save fuel in mobile machines.
The overview will systematically build upon the well-known circuits divided into resistance and displacement control. The different avenues that research and development efforts in academia and industry are focusing on will be discussed with regard to their inherent advantages and disadvantages. By addressing these aspects it will become clear that a design solely focused on the hydraulic circuit is not sufficient. The combustion engine as well as the load cycle must be included into the drive’s design.
To further improve efficiency much research has been conducted into the recovery and reuse of energy in mobile machines. Against this background the lecture will consider the concept of energy storage as a method to recapture energy during a load cycle allowing downsizing of the combustion engine and enabling operation around its optimal point. For this reason the talk will cover circuit configurations allowing the use of electrical, mechanical and hydro-pneumatic energy storage. Thus it will treat hybrid solutions, clearly distinguishing between flow and pressure impressed circuits, by covering their inherent characteristics and focusing on strengths and weaknesses.
After the presentation the audience should be able to systematically classify the various solutions and identify a design guideline for application or customer specific circuits.
04:20 pm
STEAM – a holistic approach to designing excavator systems
Authors:
Dipl.-Ing. Sebastian Sgro | RWTH Aachen University, IFAS | Aachen | DE
Milos Vukovic | RWTH Aachen University, IFAS | Aachen | DE
Univ.-Prof. Dr.-Ing. Hubertus Murrenhoff | RWTH Aachen University, IFAS | Aachen | DE
» Details anzeigen
Abstract für 9. IFK 2014 Aachen, 15.05.2013 Sg, Vu, Mh
Dipl.-Ing. Sebastian Sgro, RWTH Aachen University, IFAS
Dipl.-Ing. Milos Vukovic, RWTH Aachen University, IFAS
Univ.-Prof. Dr.-Ing. Hubertus Murrenhoff, RWTH Aachen University, IFAS
„STEAM – Hydraulic Design for Engine Integration“
Due to fading fossil energy resources and rising fuel prices, as well as, more stringent emission guidelines, mobile machine manufacturers are being forced to increase the energy efficiency of their products. Optimisation potential in mobile working machines can be found in the transmission and working hydraulics. More efficient drives have already been introduced using hydro-mechanical powersplit transmissions.
An entire investigation of the complete work transmission from the internal combustion engine (ICE) to the working hydraulics is necessary to improve the energy efficiency of mobile working machines. The efficiency of combustion engines is strongly dependent on their operating point and full load operation leads to maximum efficiencies. Hence, a constant full loading of the combustion engine should be targeted to increase the energy efficiency of mobile working machines. To achieve this, a constant pressure system with a fixed displacement unit in an accumulator charging circuit can be utilised. For rotational drives the adaptation of the constant pressure system to the load pressure can easily be done using variable displacement units, an energy efficient adaption for linear actuator requires more effort.
Investigations of an innovative valve controlled constant pressure system with an intermediate pressure rail for an efficient pressure adaption (STEAM-system) are introduced in this paper. The idea of this system is to keep the load torque on the internal combustion engine of mobile working machines constant, so that it is forced to operate in an energy efficient region. The additional intermediate pressure rail is used to adapt the constant pressure to the load pressure of linear actuators efficiently. The three pressure rails, i.e. high, intermediate and tank pressure, can be connected independently to the cylinder using simple 2/2 way switching valves. In this manner only a low pressure difference between supply and load pressure has to be throttled. Additionally, independent metering edges are used for the STEAM-system. They further improve the system efficiency by avoiding throttling losses of the meter-out volume flow. The control algorithm connects the three pressure rails individually to the cylinder in such a way that only a minimum pressure difference has to be throttled. The intermediate pressure rail is supplied by a fixed displacement unit in an accumulator charging circuit, while the high pressure rail is supplied by the intermediate pressure rail. The pressure transformation is done using a hydraulic transformer (cf. Figure 1).
Figure 1: Hydraulic circuit of the STEAM-system
04:40 pm
Green Wheel Loader - Development of an energy efficient drive and control system
Authors:
Markus Schneider | TU Dresden, Institut für Fluidtechnik | Dresden | DE
Oliver Koch | Institut für Fluidtechnik, TU-Dresden | Dresden | DE
Prof. Dr. Jürgen Weber | Technische Universität Dresden | Dresden | DE
Markus Bach | RWTH Aachen, Institut für Maschinenelemente und Maschinengestaltung | Aachen | DE
Prof. Dr. Georg Jacobs | Institut für Maschinenelemente | Aachen | DE
» Details anzeigen
Bei der Weiterentwicklung mobiler Arbeitsmaschinen steht heute neben der Steigerung von Produktivität und Bedienerkomfort vor allem die Verbesserung der Energieeffizienz und die Einhaltung der gesetzlichen Abgasemissionsrichtlinien (US TIER 4 final, EU Stufe 4) im Fokus. Ansatzpunkte sind das optimale Zusammenspiel aller Komponenten des Antriebssystems, die Optimierung der Arbeitsprozesse und die Steigerung der Effizienz durch den Einsatz alternativer Antriebe. Die Entwicklung von energieeffizienten und emissionsarmen Antrieben für mobile Arbeitsmaschinen bedeutet eine immense Herausforderung, da gleichzeitig Aspekte wie Wirtschaftlichkeit, Leistungsfähigkeit, Lebensdauer und Sicherheit berücksichtigt werden müssen. Aus diesem Grund haben sich unter dem Titel „TEAM – Entwicklung von Technologien für energieeffiziente Antriebe mobiler Arbeitsmaschinen“ 20 Industrieunternehmen und fünf Hochschulinstitute zusammen¬geschlossen, um sich dieser komplexen Aufgabe zu stellen. In dem vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Verbundforschungsprojekt bearbeiten die Partner innerhalb von drei Jahren fünf sich ergänzende Schwerpunkte.
Im Themenschwerpunkt „Grüner Radlader“ werden unter Berücksichtigung der aktuellen Entwicklungen in Forschung und Industrie am Beispiel eines Radladers und eines Tagebaubaggers neue Antriebslösungen für die Hauptverbraucher mobiler Arbeitsmaschinen konzipiert und bewertet. Für den Radlader werden die gefundenen Lösungen in einer Demonstratormaschine, einem 24 t Radlader mit einer Antriebsleistung von 200 kW, zusammengeführt und erprobt.
Im vorgeschlagenen Beitrag werden die aktuellen Arbeiten zur Entwicklung des Antriebssystems des Radladers und der zugehörigen Steuerung vorgestellt Ein Leistungsverzweigungsgetriebe für den Fahrantrieb, ein verdrängergesteuerter Antrieb für die Arbeitsausrüstung sowie ein auf einen eingeschränkten Betriebsbereich optimierter Dieselmotor ersetzen das konventionelle Antriebssystem. Außerdem bietet ein hydrostatisches Hybridmodul die Möglichkeit, die Energieflüsse im System z. B. durch Rekuperation gezielt zu beeinflussen. Die sich durch den Einsatz der genannten Technologien ergebenen Freiheitsgrade und Funktionen (z. B. durch die konsequente Nutzung von Rekuperation sowohl im Fahrantrieb als auch in der Arbeitsausrüstung) ermöglichen eine optimierte Abstimmung der Systeme zueinander, erhöhen allerdings wesentlich die Komplexität des Antriebs- und Steuerungssystems. Die Entwicklung einer geeigneten Steuerungsstrategie bildet daher den Schwerpunkt der vorgestellten Arbeiten.
Für den Erfolg des Projektes ist ein systematisches Vorgehen im Entwicklungsprozess unerlässlich. Hierzu gehört zum Einen der Entwurf der Betriebsstrategie, der durch den gezielten Einsatz der Systemsimulation unterstützt wird. Zum Anderen ist es notwendig, die entwickelten Algorithmen für die Erprobung im Demonstratorfahrzeug in eine Maschinensteuerungs¬software zu überführen. Die Funktionsfähigkeit in Verbindung mit dem realen Steuergerät wird vorab innerhalb einer Hardware-in-the-Loop Umgebung gegenüber einer virtuellen Maschine getestet.
Der vorgeschlagene Beitrag erläutert zunächst die Konzeption der Antriebsstruktur mit den genannten Subsystemen und deren Dimensionierungsgrundlagen. Systemsimulationen zeigen anhand repräsentativer Lastzyklen das Energieeinsparpotenzial der entwickelten Antriebslösung im Vergleich zu konventionellen Systemen auf. Die Entwicklung der Steuerungssoftware ausgehend von den gefundenen Steuerungsalgorithmen und deren Umsetzung auf eine Mobilsteuerung liegen neben der Validierung am HiL-Prüfstand im Fokus des Artikels. Außerdem wird die konstruktive Integration der Komponenten in das Demonstratorfahrzeug dargestellt. Den Abschluss bildet ein Ausblick auf zu erwartende Ergebnisse im Fortgang des Projektes.
05:00 pm
Secondary Energy-saving Measures in Mobile Hydraulics
Authors:
Dr. Christian Stammen | XCMG European Research Center GmbH | Krefeld | DE
Dipl.-Ing. Jan Deichmann | XCMG European Research Center GmbH | Krefeld | DE
» Details anzeigen
In every aspect of engineering, the improvement of energy efficiency is promoted. In mobile hydraulics, the most visible efforts of industrial development or academic research are concentrating on either reduced losses for main functions (pump control vs. valve control for cylinders, hydrostatic drive trains with mechanical gearbox, closed-center load-sensing systems vs. open-center main control valves, …), energy recuperation (most relevant for lower dynamics, e.g. on cranes [Liebherr IFK 2012] or the efficiency improvements in certain main components such as pumps.
Many approaches for energy efficient hydraulic circuits are featuring a variety of pumps to reduce pressure loss, additional valves for energy regeneration, accumulators for energy recuperation or combinations of these additional components. These additional parts are expected to pay for themselves even before the system is sold to the customer, who focuses on higher productivity through efficiency going along with energy savings, but dislikes every additional cost. To reduce the additional cost is a benefit to use some of the components in several ways, e.g. while the relevant drive is idling. In an (stationary hydraulic) example, the vane pump of a “Drive Controlled Pump” [Parker HIM/bauma 2013] demonstrator isn’t exclusively used to drive a cylinder in an efficient way, but part-time instead of idling for cooling and filtration of the whole circuit.
The way how volume flow is provided for so-called minor or subordinate hydraulic functions like piloting, cooling and flushing is usually not considered for further discussions. Of course, it is advantageous to concentrate on significant savings for big energy consumers first, but relevant shares for further improvement can be identified in these minor functions. These are less linked to the main hydraulics dynamics, so a variety of different solutions can be applied without disturbing the machine behavior, which is a sacred cow especially in construction machinery.
The paper discusses different new or known ways to save energy in minor hydraulic functions with low or no additional cost.
Alternative circuits supplying valve-controlled systems, such as simple load sensing (LS) or negative flow control (NFC) systems, with piloting oil can save energy and investment cost. The flow demand for piloting is calculated and validated by measurements. The efficiency of the standard piloting circuit with gear pump and pressure relief valve is discussed. As the pilot oil flow is low, a remarkable amount of energy can be saved by removing the gear pump and replacing it by a pressure reducing valve, disregarding the throttling losses. Cost savings and the high energy savings are calculated and validated by measurements, resulting in lower fuel consumption for idle state and a higher productivity during work with higher rotational speed of the diesel engine.
Regarding closed circuits, an energy-efficient way to provide the flushing flow is discussed that also eases the cooling. The cooling flow’s compression energy is regenerated. This reduces energy consumption as well as required cooling capacity.
In both secondary areas, there are remarkable and predictable savings to be earned with low effort.